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Molecular dynamics simulations of uniaxial Gay-Berne ellipsoids as prolate liquid crystal molecules con-
fined between two flat, structureless walls have been carried out in order to investigate anisotropy in their
dynamic properties. Several physical quantities are profiled as a function of distance from a wall. The walls
stimulate ellipsoids into different behaviors from those of the bulk system. The profiles of self-diffusion
coefficients, which are distinguished in each direction of a director-based coordinate system, show that the
ellipsoids are more diffusive parallel to the walls and less diffusive perpendicular to the walls with decreasing
distance from the walls. According to the self-rotation coefficient and rotational viscosity profiles, ellipsoids
are easy to rotate parallel to the walls and hard to rotate in the plane perpendicular to the walls. The analyses
of velocity autocorrelation functions, angular velocity autocorrelation functions, director angular velocity au-
tocorrelation functions, and their spectra are useful for the investigation of anisotropy near the walls. We
conclude that the flat, structureless wall not only prevents ellipsoids from diffusing and rotating in the plane
perpendicular to the walls, but also stimulates them to diffuse and rotate in the plane parallel to the walls.
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I. INTRODUCTION

With the recent development of microfabrication tech-
niques, research into the properties of molecules confined in
submicron- or nano-sized devices is necessary. Confined
molecules generally show different characteristics from those
in bulk systems �1�. Soft matters in submicron pores or na-
nopores have also been investigated using nuclear magnetic
resonance methods. Jin et al. confined liquid crystal mol-
ecules of cyanobiphenyl series in porous almina and investi-
gated the anchoring transition dependent on the length of the
hydrocarbon tail of the liquid crystal �2�. Zax et al. re-
searched the mobility of a polymer confined in a slit pore of
a few nanometers width �3�.

Simulational approaches are also useful for investigating
molecules confined in nanosized devices. The thermodynam-
ics of particles in a partially closed environment demands
that the volume is decomposed into two variables: one char-
acteristic to the system and another that is not �4�. For in-
stance, the volume can be decomposed into the distance be-
tween two walls and the rest of the surface area when
particles are confined between a slit-pore; then the thermo-
dynamic variables of the cylindrical system are the radius
and the length of the cylinder. Molecules confined in a slit
�5–10�, a cylinder �11–16�, and a nanoporous material �17�
have been investigated widely with molecular dynamics
simulation, Monte Carlo simulation, and so on.

Liquid crystal molecules realize several intermediate
phases, depending on the shapes of each molecule and they
have been utilized in display technology. Liquid crystal mol-
ecules confined in nanopore shapes are expected to be ap-
plied devices and they have been investigated by molecular
dynamics simulations and Monte Carlo simulations in the
last decade. Wall and Cleaver carried out molecular dynam-

ics simulations of prolate uniaxial ellipsoids confined in a slit
and researched phase transitions with decreasing tempera-
ture, with a fixed slit gap �18�. Gruhn and Schoen researched
ellipsoids between two walls made of particles on the basis
of a grand canonical ensemble and observed that ellipsoids
arranged into layers sequentially, with increasing distance of
the walls �19�. The interaction between a liquid crystal mol-
ecule and a wall has been also studied. Steuer et al. prepared
two walls which had different homogeneous planar align-
ment and observed the twisted nematic state �20�. Barmes
and Cleaver proposed an interaction between a hard aniso-
tropic particle and a wall and investigated planar, tilted, and
homeotropic states �21�. Additionally, the calculations con-
sidering the electrostatic interaction have been performed.
Gwóźdź et al. confined ellipsoids with an electric dipole into
the slit whose walls were made of fixed ellipsoids and ana-
lyzed the phase transitions �22�. Miyazaki and Yamashita
applied a uniform field to the ellipsoids and observed an
induced orientational transition �23�. While the static proper-
ties of confined liquid crystal molecules have been investi-
gated widely, the dynamic properties of liquid crystal mol-
ecules confined in a slit have hardly been researched.

The purpose of the present paper is to investigate the
transport properties of uniaxial nematogen Gay-Berne ellip-
soids confined between two flat, structureless walls. Three
kinds of transport coefficients, that is, the self-diffusion co-
efficient, self-rotation coefficient, and rotational viscosity
will be studied. In Sec. II, the simulation cell to which the
thermostat and barostat are attached, the interaction between
two ellipsoids, the ellipsoid-wall interaction, and descrip-
tions of microscopic physical quantities are described. In
Sec. III, the results and discussion are presented. Static prop-
erties and the ellipsoid order are reported in the first half.
Then, the dynamic properties in the ordered state are consid-
ered. The conclusion follows in Sec. IV.*t_mima@z8.keio.jp
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II. METHODS

A. System

In order to investigate the behavior of confined, prolate,
liquid crystal molecules, 16 200 uniaxial Gay-Berne ellip-
soids as nematogen liquid crystals �24� were confined into a
thin slit. The slit comprised two flat, structureless walls that
were parallel to each other �Fig. 1�. The z axis is perpendicu-
lar to the walls. First, the system is equilibrated in the
NhPxxT ensemble, where N is the number of ellipsoids, h is
the distance between two walls, and T is the temperature.
Pxx�=Pyy� is the pressure tensor component parallel to the
walls: the base area of the walls, A, fluctuates so as to keep
the pressure parallel to the walls constant, Pxx. Then, physi-
cal quantities are calculated in the NhAE ensemble, that is,
the microcanonical ensemble, where E is the total energy. In
this paper, h was fixed at 15, measured as the length of a
short axis of the ellipsoid, and the dimensionless pressure
and temperature, �Pxx ,T�, were set to �Pex ,Tex�= �4.0,1.0� or
�3.0,1.0�, which correspond to the nematic and isotropic
phase individually in the bulk system �25�. We will see that
ellipsoids are ordered in the high-pressure state and disor-
dered in the low-pressure state in Sec. III. Dynamic proper-
ties were investigated only when the ellipsoids were uniaxi-
ally ordered.

B. Interaction

The interaction between two uniaxial ellipsoids was de-
scribed by the Gay-Berne potential �24�,

�GB�rij,ei,e j� = 4��r̂ij,ei,e j��� �0

rij − ��r̂ij,ei,e j� + �0
�12

− � �0

rij − ��r̂ij,ei,e j� + �0
�6� , �1�

��r̂ij,ei,e j� = �0� 1
	1 − �2�ei · e j�2��

��r̂ij,ei,e j,����, �2�

��r̂ij,ei,e j� =
�0

	��r̂ij,ei,e j,��
. �3�

Here rij is the positional vector between the ith and jth cen-
ters of mass of the ellipsoids and r̂ij is the normalized posi-
tional vector. ei is the orientation vector of the ith ellipsoid,
which corresponds to its long axis. The amplitude of ei is
unity. �0, �0, �, �, �, and �� are parameters. � is the func-
tion for anisotropy,

��r̂ij,ei,e j;a� = 1 −
a

2
� �r̂ij · ei + r̂ij · e j�2

1 + aei · e j

+
�r̂ij · ei − r̂ij · e j�2

1 − aei · e j
�, a = �,��. �4�

In this paper, �0=1, �0=1. � is set to 0.8, which corresponds
to 3.0 in the axial ratio. �=1, �=2 and ��=0.382: the nem-
atic phase can arise with this choice of parameters.

There are various descriptions of interactions between a
Gay-Berne ellipsoid and a wall �18,19,22,23�. We have de-
fined the potential by imposing anisotropy to a Lennard-
Jones 9-3 potential �26�:

�wall�zi,ei,z;zw�

=
2	

3
�w�ei,z�� 2

15
� �0w


zi − zw
 − �w�ei,z� + �0w
�9

− � �0w


zi − zw
 − �w�ei,z� + �0w
�3� , �5�

where ej,z is the z component of the jth orientation and zw is
the position of the wall. As in the Gay-Berne potential, �w,
�w, and �w are functions for anisotropy,

�w�ei,z� = �0w� 1

	1 − �w
2 �1 − 2ei,z

2 �
��w

�w�ei,z;�w� ��w, �6�

�w�ei,z� =
�0w

	�w�ei,z;�w�
, �7�

�w�ei,z;a� = 1 −
2aei,z

2

1 − a�1 − 2ei,z
2 �

, a = �w,�w� . �8�

�w can be obtained by substituting rij = �0,0 ,zi−zw�, e j

= �ei,x ,ei,y ,−ei,z� into �: this condition corresponds to locat-
ing a mirror-image ellipsoid on a wall. The axial ratio for �w
is not necessarily equal to � as Gruhn reported �19�. On the
other hand, �w cannot be obtained through � with the mirror-
image condition. Because of this definition of �w, the abso-
lute value of the potential well depth increases uniformly
when an ellipsoid becomes parallel to the walls. In this pa-
per, �0w=�0, �0w=0.5, �w=0.6, �=1.0, �=0.5, and �w� =0.6.
The amplitude of the ellipsoid-wall interaction is of the same
order as the ellipsoid-ellipsoid interaction with this choice of
parameters. Figure 2 shows �wall curves of four configura-
tions of a uniaxial ellipsoid. It is found that the shape of the
ellipsoid-wall potential varies depending on the orientation
of a uniaxial ellipsoid. Equation �5� with these parameters
describes well the interaction between an ellipsoid whose

x
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barostat (Pxx )thermostat (T )

slit gap(h ) N particles

FIG. 1. Schematic figure of the system. The area of the base, A,
can fluctuate so as to keep the pressure parallel to walls constant,
Pxx. The thermostat acts for all of the ellipsoids.
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axial ratio is 3.0 and the wall. Note that the wall described by
Eq. �5� is flat and has no structure fixed on the surface. There
are several definitions of the slit gap �10,18�. Considering the
exclusive volumes of both an ellipsoid and a wall, first we
defined 
z as the distance from the center of a wall to the
surface of the wall. 
z is equal to half of the distance with
which �wall is zero when an ellipsoid is parallel to a wall:

z= �	62 /15� /2�0.358. Then we defined the slit gap, h, as
the distance between surfaces of two walls. With this defini-
tion, two walls are at zw=0 and zw=h+2
z when the slit gap
is h. The spherical cutoff distance of 4.0 was applied to both
potentials independent of the ellipsoid’s orientation.

C. Equations of motion

When the NhPxxT algorithm is adopted to uniaxial ellip-
soids, the total energy of the system with a thermostat and a
barostat, E, is as follows �27,28�:

E = �
i=1

N
pi

2

2m
+ �

i=1

N
Iui

2

2
+ �

i=1

N

�
j�i

�GB�
qi − q j
,ei,e j�

+ �
i=1

N

�wall�zi,ei,z;0� + �
i=1

N

�wall�zi,ei,z;h + 2
z�

+
QT�2

2
+ kBTexg ln s +

QP�P
2

2
+ PexV . �9�

Here qi is the positional vector of the ith ellipsoid, pi is the
momentum, ei is the orientation vector, and ui is the time
derivative of the orientation vector. � is the variable of the
Nosé-Hoover thermostat and s is another variable of the ther-
mostat. �P is the variables of the Andersen barostat and V is
the volume of the simulation cell. Tex and Pex are the fixed
temperature and the fixed pressure, individually. m is the
mass, I is the moment of inertia, and kB is Boltzmann’s con-
stant. QT and QP are the parameters of the thermostat and the
barostat, respectively, and g is the total number of degrees of
freedom. The equations of motion for the ith center of mass
qi and the momentum pi become

dqi,�

dt
=

pi,

mA1/2 , �10�

dqi,z�

dt
=

pi,z

m
, �11�

dpi,

dt
= Fi, − �pi, − �Ppi,, �12�

dpi,z

dt
= Fi,z − �pi,z, �13�

where qi,� =qi, /A1/2 and  stands for x and y. The force on
i, Fi, is derived as −���GB /�ri+��wall /�ri�. The equations of
motion for the unit orientation vector of the ith uniaxial el-
lipsoid, ei, and its time derivative, ui, are applied as

dei

dt
= ui, �14�

dui

dt
=

Gi

I
− �ui − �iei, �15�

where Gi is called gorque �29�, which is derived as
−���GB /�ei+��wall /�ei�. In this paper, the rotation around ei

is neglected. Lagrange multiples �i are imposed so as to
conserve the condition ei

2=1 and ei ·ui=0. � and �p work so
as to keep the temperature to Tex and the pressure to Pex.
They are solved with s and the base area of the simulation
cell, A,

d�

dt
=

1

QT
�2K − gkBTex� , �16�

ds

dt
= s� , �17�

dA

dt
= 2A�p, �18�

d�p

dt
=

2V

QP
�Pxx − Pex� , �19�

where K is the momentary total kinetic energy, namely, the
summation of translational and rotational kinetic energy, Pxx
is the momentary pressure tensor component parallel to
walls. The number of degrees of freedom, g, was set to 3N
−2+2N. The scheme of the numerical integral has been re-
ported by Ilnytskyi and Wilson. They also reported that the
difference equation yielded total energy drift. We examined
and found that this drift caused the heating of the system in
a microcanonical ensemble. Physical quantities were, there-
fore, calculated until the drift was 1% relative to Tex, and
then the system was corrected by attaching the thermostat
and barostat.

The results for this model are given in length, energy,
mass, moment of inertia, time, pressure, and temperature
units of �0, �0, m, I, 	m�2 /�0, 	�0 /�3, and �0 /kB, respec-
tively. The time step was set to 0.005 over all simulations.
The QT value was set between tens and hundreds and the QP
was set to over 10 000.
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FIG. 2. Ellipsoid-wall potential. The wall is at zw=0. Four con-
formations were drawn. � is the angle between the orientation of a
ellipsoid and z axis. �a� �=	 /2, �b� �=	 /3, �c� �=	 /6, and �d�
�=0.
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D. Physical quantities

We can calculate the physical quantity profile as a func-
tion of the distance from a wall in the case of particles con-
fined between two walls. In this paper, the system was re-
solved by planes parallel to the walls, then physical quantity
profiles were calculated as the function of the z. The system
was resolved into several thin sheets of thickness of 0.1 or 15
segments whose thickness was 1.0.

In the case of uniaxial ellipsoids, the number of the de-
grees of freedom of an ellipsoid is five: three translational
and two rotational components. Five kinds of temperatures
are, therefore, obtained from corresponding velocities, re-
spectively. Three translational temperatures are straightfor-
ward:

T�zC� = 2

kBNC
�
i�C

pi,
2

2m� , �20�

where  stands for x, y, or z, C is the region of a segment, zC
is the distance from the wall representing the position of C,
NC is the number of ellipsoids in C, and �� denotes the aver-
age over samples. Two components of the rotational velocity
of an ellipsoid have been obtained in a two-dimensional Car-
tesian coordinate perpendicular to the orientation vector of
the ellipsoid. First, two unit vectors that stand for axes of the
two-dimensional coordinate are defined as follows:

ei,A =
ei � ez


ei � z

, �21�

ei,B =
ei � ei,A


ei � ei,A

, �22�

where z is the unit vector parallel to the z axis; ei,A is parallel
to walls, and ei,B is perpendicular to walls. Second, the rota-
tional velocity, ui, is decomposed into two components, ui,A
and ui,B:

ui,A = �ui · ei,A�ei,A, �23�

ui,B = �ui · ei,B�ei,B. �24�

Then the rotational temperatures become

T�zC� = 2

kBNC
�
i�C

Iui,
2

2 � , �25�

where  stands for A or B.
For the number density profile, we have

��zC� = NC

VC
� , �26�

where VC is the volume of C.
Two kinds of order parameter are calculated in order to

investigate orientational order: P2 and P2z. P2, commonly
calculated in bulk liquid crystals, is the degree of global
uniaxiality, which is the maximum eigenvalue of the follow-
ing tensor:

Q2 =�
i=1

N
3ei � ei − 1

2 � . �27�

P2=0 when ellipsoids are distributed at random and P2=1
when ellipsoids are perfectly ordered. When 0.6� P2�0.7,
we generally regard the Gay-Berne ellipsoids as in the nem-
atic phase in the bulk system. The eigenvector of the maxi-
mum eigenvalue is called the director, n. The local order
parameter, P2�zi�, can be calculated from

Q2�zC� =�
i�C

3ei � ei − 1

2 � . �28�

Local directors, nC, and their polar and azimuth angles are
also calculated simultaneously. Note that we should average
the matrix Q2�zC� when thin sheets with the thickness of 0.1
are used, rather than average eigenvalues themselves because
of the problem of system size �30,31�. The local order pa-
rameter P2z�zC� is sensitive to the order parallel and perpen-
dicular to the xy plane �18�:

P2z�zC� =�
i�C

�3ei,z
2 − 1�
2 � . �29�

P2z=−0.5 when all ellipsoids are parallel to the walls, P2z
=0 when ellipsoids are oriented randomly, and P2z=1.0
when all ellipsoids are perpendicular to the walls.

No value is output to profiles calculated with thin sheets
where no ellipsoids were present or the number of ellipsoids
was poor for sampling, in short, near the walls. Because of
the aforementioned reasons, values of temperatures, P2, P2z,
and the polar and the azimuth angle of the director have been
not output near the surfaces of walls.

When uniaxial ellipsoids are ordered in a globally
uniaxial state, transport coefficients should be calculated in
appropriate director-based coordinates in every segments of
the system resolved. In the present paper, profiles of the self-
diffusion coefficient, self-rotation coefficient, and the rota-
tional viscosity are calculated. Self-diffusion coefficients
�SDC� as a function of the segment at C, D�zC�, is calculated
from the integration of the corresponding velocity autocorre-
lation functions �VACF�, fVACF�t�. The appropriate Green-
Kubo formula is

D�zC� = �
0

+�

dtfVACF,�zC,t� , �30�

fVACF,�zC,t� = 1

NC
�
i�C

vi,�t�vi,�0�� , �31�

where  stands for a component of the coordinate. VACFs
should be calculated in the director-based coordinate so as to
calculate SDCs when ellipsoids are in a uniaxially ordered
state. The method of transformation of the coordinate or the
way to define  will be explained in Sec. III.

In the case of the system of uniaxial ellipsoids, the inte-
gral of the angular velocity autocorrelation function
�AVACF�, fAVACF, can be defined as the degree of the ease of
rotational motion of ellipsoids,
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R�zC� = �
0

+�

dtfAVACF,�zC,t� , �32�

fAVACF�zC,t� = 1

NC
�
i�C

�i,�t� · �i,�0�� , �33�

where �i,=ei�ui, is the angular velocity of the ith ellip-
soid and  stands for A or B. R has no particular name, as far
as the authors know. In this paper, we call R the self-rotation
coefficient �SRC�. In the case of ellipsoids confined in a slit,
they should be calculated every component. RA is related to
the ease of the rotational motion of ellipsoids parallel to
walls and RB is related to the ease of the rotational motion
perpendicular to walls.

The rotational viscosity �RV� which is defined in uniaxi-
ally ordered ellipsoids is concerned with the average rota-
tional mobility of ellipsoids and it is important in designing
and controlling liquid crystal displays. RV is related to the
inverse of the integration of the director angular velocity
autocorrelation function �DAVACF� �32�,

kBT

VC��zC�
= �

0

+�

dt��C,�t��C,�0�� . �34�

Here � is a component of �, which is the director angular
velocity vector as the external product of a director, n, and
its time derivative, ṅ; �=n� ṅ. Transforming the coordinate
in which one axis is parallel to the director, we find that �
has only two components. These components are equivalent
in the case of the bulk equilibrium nematic phase. In the case
of uniaxial ellipsoids confined between two walls, however,
we should distinguish the component parallel to walls from
that perpendicular to the walls. In this paper, we have defined
two director angular velocities in a similar way for the cal-
culation of u. First, the two unit vectors that stand for axes
of the two-dimensional coordinate are defined as follows:

eC,A =
nC � z


nC � z

, �35�

eC,B =
nC � eC,A


nC � eC,A

. �36�

Second, the rotational velocity of the director, ṅC, is decom-
posed into two components, eC,A and eC,B:

ṅC,A = �ṅC · eC,A�eC,A, �37�

ṅC,B = �ṅC · eC,B�eC,B. �38�

Then, two director angular velocities are calculated:

�C, = nC � ṅC,, �39�

where  stands for A or B. Finally, the rotational viscosity
becomes

kBT

VC��zC�
= �

0

+�

dtfDAVACF,�zC,t� , �40�

fDAVACF,�zC,t� = ��C,�t� · �C,�0�� . �41�

Note that �A is the rotational viscosity in the plane parallel to
walls and �B is the other one in the plane perpendicular to
walls.

Note that ellipsoids can move to other segments and
might return to the original one in �. Considering mean
square displacements �MSD� every segment, we will also see
that the segments with a thickness of 1.0 are acceptable in
Sec. III; the MSD at the time of t in the  direction is defined
every segment as follows:

S�zC,t� = 1

NC
�
i�C


qi,�t� − qi,�0�
� . �42�

In Sec. III, it will be reported that each segment contains
more than 1000 ellipsoids; the number is sufficiently large to
average. Transport coefficients profiles were calculated in the
following manner. First, the simulation cell was resolved into
Ns=15 segments parallel to the walls. Next, ellipsoids were
labeled every segment at moment t=0. Then, autocorrelation
functions were calculated from labeled ellipsoids every seg-
ment in the interval of �0,��, where � is the upper limit of
time integration and we set � to 4.0. Finally, the labels were
updated every � and the calculation was repeated. 7000
samples was sufficient in order to calculate SDCs and SRCs.
On the other hand, up to 1 000 000 samples were demanded
for the accuracy of RVs: an overlapped data collection
method was applied for calculation of RVs �33�.

In order to consider the difference between transport
properties in the center and those that neighbor walls, Fou-
rier cosine transforms are carried out on unnormalized cor-
relation functions:

F��� = �
0

+�

dtf�t�cos �t , �43�

where � is an angular frequency, f�t� is a correlation func-
tion, and F��� is its Fourier transform, in other words, the
spectrum intensity of a cosine component with �.

III. RESULT AND DISCUSSION

A. Static properties

To evaluate the degree of order of uniaxial ellipsoids, we
now discuss static properties. Figure 3 shows three transla-
tional and two rotational temperatures in both low- and high-
pressure conditions. Any temperatures are globally con-
trolled to unity.

According to the profile of local number density and two
order parameters, both the low- and high-pressure systems
are categorized in two parts; one part where ellipsoids are
distributed uniformly and the other part influenced by the
walls. Figure 4�a� shows number density profiles in the low-
and high-pressure conditions. Centers of mass of the ellip-
soids appear to distribute uniformly in the center region,
about 4.36�z�11.36, under both conditions. Uniform num-
ber density is 0.293 in the low-pressure condition and 0.322
in the high-pressure condition; these two values are in good
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agreement with those in bulk systems. Both profiles oscillate
strongly upon approach to the walls and there are three or
four local maxima near the wall. The value of the maximum
is about 1.0 and the summation of thicknesses of layers near
one wall is nearly equal to 4.0 of the cutoff length. This
means that the centers of mass of the ellipsoids that are in-
fluenced by the walls conform to layers parallel to the wall

and seem to be ordered under both conditions. The local
maxima under the low-pressure condition are smaller than
those in the high-pressure condition and the local minima
under the low-pressure condition are larger than those in the
high-pressure condition. This difference between number
densities corresponds to the difference in fluidity and pack-
ing effect. Number densities of 15 segments are, on the other
hand, 0.292���0.301 under the low-pressure condition
and 0.322���0.330 under the high-pressure condition
�Fig. 4�b��: the difference in the number of ellipsoids in ev-
ery condition is not outstanding. This fact means that each
segment contains more than 1000 ellipsoids and it is ex-
pected that the number of ellipsoids are sufficiently large to
calculate transport coefficients every segment. Additionally,
it means that if anisotropic transport is observed, it is mainly
caused by the flat, structureless walls, not by the difference
in the number density, namely, the thermodynamic condition.

Ordering of uniaxial ellipsoids is clarified by order param-
eters as in Eqs. �28� and �29�. P2 profiles are shown as in Fig.
4�c�. P2 is at most 0.3 under the low-pressure condition and
about 0.03 in the center. On the other hand, P2 values are
more than 0.6 globally under the high-pressure condition: the
averaged value is 0.66. It follows that confined ellipsoids are
ordered with global uniaxiality. There is a part near a wall,
where the value of the order parameter P2 is under 0.6. This
means that the degree of uniaxiality of ellipsoids there is
weaker than another ellipsoids, in other words, orientations
of ellipsoids tend to fluctuate more largely than another el-
lipsoids. This fact is, however, consistent with global uniaxi-
ality because the parts with P2 under 0.6 correspond to the
local minima of a fine number density profile and the number
of ellipsoids with large fluctuation is regarded to be small.

The value of P2z oscillates among negative values under
both thermodynamic conditions �Fig. 4�d��. This corresponds
to the ellipsoids being parallel to the walls, which is caused
by the flat, structureless wall. Note that local minima of P2z
correspond to local maximums of number density. Under the
low-pressure condition, the profile went to zero at the center.
This shows that the influence of the walls exists in the center,
even if the distance between walls is 15, which is over twice
the cutoff length. Gruhn et al. have estimated that the slit gap
which yields the bulk condition correctly is of the order of
hundreds at least �19�. When interested in the confined par-
ticles that describe the behavior of the bulk system, one must
prepare a very large number of particles. It is found that
ellipsoids are not ordered globally under the low-pressure
condition. On the other hand, P2z under the high-pressure
condition shows that ellipsoids are likely to align parallel to
the walls. The value is under −0.3 globally under the high-
pressure condition. In particular, local minima nearest the
walls are nearly equal to −0.5. Thus it is found that ellipsoids
nearest the wall orient parallel to the walls strongly. We con-
clude that uniaxial ellipsoids are globally ordered in
�Pxx ,T�= �4.0,1.0�, as is the case in the bulk nematic phase
and ellipsoids nearest the walls stratify parallel to the walls.
Then, they have only translational order just near the walls in
�Pxx ,T�= �3.0,1.0� and ellipsoids are not ordered as is in the
bulk isotropic phase.

In the case of the uniaxially ordered state, that is, the
high-pressure state, the calculation of the local directors is
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useful in order to consider the behavior of twist. The polar
angle, �p, is the directional cosine angle between the ellip-
soid’s orientation and the z axis and the azimuth angle, �a, is
defined between the x axis and the production of local direc-
tors on the xy plane. In the case of uniaxial ellipsoids, it is
sufficient to define 0° ��p�90° and −180° ��a�180°.
Those profiles are shown in Figs. 4�e� and 4�f�, respectively.
Figure 4�e� shows that all of the ellipsoids tend to be parallel
to the walls strongly, as is shown in Fig. 4�d�, and the devia-
tion is about 3° at most. Polar oscillation near the walls cor-
responds to the layer structure. The azimuth angle profile
shows that all of the ellipsoids tend to be oriented in one
direction over the system with a deviation of only 1.0, which
is not twisted greatly.

B. Dynamic properties

When transport coefficients are calculated as a profile, in
other words, are calculated for every segment parallel to the
walls, we should inspect whether the thickness of a segment
is sufficiently large compared to the transport of ellipsoids
perpendicular to segments with a given sampling time. We
have to, namely, consider the MSD in the z direction at t
=�=4.0. Figure 5 shows the value of the MSD perpendicular
to the walls, MSDz, at t=4.0 in �Pxx ,T�= �4.00,1.00�. The
fine local number density profile is inserted there for its use-
fulness. All MSDz are less than 0.33 at t=4.0 and MSD cal-
culated in the nearest, second nearest, and third nearest seg-
ment are less than 0.11, 0.23, and 0.28 individually. Thus it is
expected that the thickness of 1.0 for a segment is not too
large for sampling by t=4.0 because the MSD value of 0.33
corresponds to 	0.33�0.58�1.0 as the distance. In other
words, we can define transport coefficients for every layer in
t=4.0.

Because of the result of the azimuth profile, we are able to
transform the xyz coordinate into the director-based coordi-
nate in order to calculate VACFs of confined uniaxial ellip-
soids. The manner of transformation was as follows. First,
the eigenvector of the maximum eigenvalue of Eq. �27� was
calculated over the system and its projection to the xy plane
was defined as the new direction of coordinate, X. Z was the
same as z and Y was the direction perpendicular to Z and X.
In other words, the xyz coordinate was rotated around the z
axis so as to transform it into the director-based coordinate.
The settlement was carried out when the calculation of
VACFs began. Alternatively, it was carried out at the same
time of the labeling of the ellipsoids. Then, VACFs were
calculated in the XYZ-coordinate system, which was fixed
until 0� t��: DX, DY, and DZ are calculated. Finally, the

XYZ coordinate was uploaded every � and sampling was
repeated.

Generally, the SDC along the director is larger than the
SDC perpendicular to the director in the bulk nematic phase
�34–36�. When ellipsoids are confined between two walls,
moreover, the diffusion perpendicular to the walls should be
distinguished from the diffusion parallel to the walls. There-
fore all three directions of the diffusion are different, as is
shown in Fig. 6 in the present system.

In center, it is found that ellipsoids are three times as
diffusive to the direction of the director as to the rest of the
directions perpendicular to the director. The remaining two
directions of diffusion are expected to be equal to each other,
however, they are slightly different: the difference between
DY and DZ is about 0.0014. As seen in the P2z profile under
the low-pressure condition, this property of incompleteness
for a bulk system is to be observed. The values of SDCs in
the center of the current system are consistent with the result
in the bulk system �37,38�, two components are expected to
be equal to each other with a sufficient distance between the
two walls. Frenkel et al. have reported that the ratio of the
anisotropy of diffusion, R, becomes a linear function of the
global order parameter in the bulk system �39�:

R =
Da − Db

Da + 2Db
= P2�Q2 − 1

Q2 + 2
� . �44�

Here Da and Db are the self-diffusion coefficient parallel and
perpendicular to the director, Q is the axial ratio and is 3.0 in
the present paper. The right-hand side is equal to 0.478 from
our result. When we substitute DX to Da and �DY +DZ� /2 to
Db, R is 0.415. While the result of hard ellipsoids by Hess et
al. have agreed well to the estimation, the error might tend to
be greater in the case of Gay-Berne ellipsoids, that is, soft
ellipsoids.

The diffusive motions near the walls are, however, very
different from those in the center. Ellipsoids diffuse to the
direction parallel to the walls, preferably nearest the walls.
DX increases suddenly upon approach to the segment near-
est to the walls. On the other hand, DY increases gradu-
ally. Then, DZ decrease gradually. SDC averaged three-
dimensionally is regarded as constant over the system.
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Sharma and Woodcock have also observed such near-wall
anisotropy along with a sudden increase of D parallel to
walls and a gradual decrease of DZ in the case of Lennard-
Jones particles confined between flat walls �40�.

In this paper, this interfacial anisotropy is explained using
the analysis of VACFs and their spectra. Figure 7 shows two
kinds of VACFs and their spectra: in the center and nearest
the wall at z=0. Initial values of VACFs are equal to 1.0 in
any direction over the zC; the thermostat has controlled the
translational temperature well. Then, VACFs converge to
zero at t=4.0 with a deviation less than 0.2% of the value of
�v�0�2�. First, we focus on the behavior in the center.
VACFX decays to a very shallow negative well. On the other
hand, VACFY and VACFZ look very similar: they each decay
to a negative value, recover to be positive, and go to zero.
Compared to VACFX, both VACFY and VACFZ decay faster
and their negative wells are deeper. These behaviors cause
globally larger values of DX than DY and DZ. The authors
have confirmed that the shapes of VACFs in the center look
very similar to those in the bulk system �37�. Observing their
spectra, we have found that spectra of VACFY and VACFZ
have rich, high angular frequencies compared with that of
VACFX, which cause faster decay of VACFY and VACFZ. It
is expected that these VACFs and their spectra in the center
reflect the character of the ellipsoids themselves. Compared
to VACFs in the center, on the other hand, VACFs nearest the
wall are different from those in the center. VACFX nearest
the wall decay more slowly than that in the center. VACFY

nearest the wall also decay more slowly and the value of the
well increase to 0. These behaviors correspond to that ellip-
soids near the wall diffuse in directions parallel to the walls,
X and Y, more widely than in the center region. Figures 7�d�
and 7�e� show that intensities of high angular frequencies of
VACFX and VACFY nearest the wall are weaker than those
in the center: moreover, intensities of low angular frequen-
cies are strengthened. We consider that this difference in dif-
fusion is related to flat, structureless walls. Ellipsoids in the
center region interact with other ellipsoids in all three direc-
tions and some interaction prevents ellipsoids from diffusing.
Motive ellipsoids nearest the walls, however, have less
chances of interacting with other motive ellipsoids: no ellip-
soids are behind of walls. The initial decay of VACFX and
VACFY, therefore, becomes slower nearest the walls. Addi-
tionally, �wall is a function only of z and does not influence
the x and y directions explicitly. It is found that flat, struc-
tureless walls decrease the chance of interaction between
motive ellipsoids, which causes the initial slow decay of
VACFX and VACFY and does not prevent ellipsoids from
diffusing parallel to the walls: DX and DY increase upon ap-
proach to the walls. In the case of VACFZ, the depth of the
well becomes deeper near the wall �Fig. 7�f��. This behavior
leads to the small value of Dz. The spectrum of VACFZ near-
est the wall looks rather different from that in the center.
Namely, both the peak at a angular frequency of 4.0 and the
plateau around 20.0 vanish, high angular frequencies over 34
weaken, and a new peak appears at 20.0. It is expected that
the new peak is caused by interaction with a wall. Because
ellipsoids nearest the walls interact with the walls more fre-
quently than ones in the center, they lose their characteristic
spectrum and new spectra stimulated by the walls are real-
ized. In order to discuss the dominant angular frequency as a
function of the distance from a wall, the VACFZ spectrum of
the second nearest segment is shown in Fig. 7�f�. Compared
to the nearest spectrum, the dominant angular frequency of
the second nearest spectrum is shifted to the low angular
frequency region and a plateau arises in the high angular
frequency region. Ellipsoids in the second nearest segment or
more center segment are enclosed by other ellipsoids and
interact in various directions, therefore, intensities at 1.0 de-
crease and oscillations characteristic of ellipsoids are recov-
ered. After all, the wall interacts with ellipsoids and causes
the biased spectrum of VACFZ, the deeper negative well of
VACFZ, and the decrease of DZ.

Figure 8 shows the SRC profiles. In the center region, RA
is different from RB: the difference between them is 0.0012.
As in the same case of SDC, two values must coincide with
each other when the distance between the walls is suffi-
ciently large. We have confirmed that the center value of our
SDC profile is acceptable compared with the results by de
Miguel et al. Upon approach to the walls with a distance of
2.0, SRC varies similarly to the SDC profile: RA increases
and RB decreases. This means that ellipsoids in the nearest
and second nearest segments to the walls are easy to rotate in
the plane parallel to the walls and are hard to rotate perpen-
dicular to the walls.

In order to consider the cause of interfacial anisotropy of
the rotational motion of ellipsoids near the walls, AVACFs
and their spectra are investigated as is shown in Fig. 9. Simi-
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FIG. 7. Velocity autocorrelation functions �VACFs� and their
spectra. �a� VACFX, �b� VACFY, �c� VACFZ, �d� spectrum of
VACFX, �e� spectrum of VACFY, and �f� spectrum VACFZ. Figures
of VACFs by t=0.5 are inserted into corresponding whole VACFs.
VACFs nearest the wall at z=0 are shown with the solid line and
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trum of the second nearest segment is shown in �f� by the dotted
line.
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larly to VACFs, the initial values of AVACFs both in the
center and nearest the wall at z=0 reflect the equipartition
theorem. We have confirmed that the equipartition theorem is
satisfied for the rest of AVACFs. In the center, both AVACFA
and AVACFB decay to negative wells and converge to zero
more slowly than VACFs. Such behavior is consistent with
the result by de Miguel et al. �37�. On the other hand,
AVACFA nearest the wall decay more slowly to the slightly
shallower negative well compared to that in the center and
the negative well of AVACFB nearest the wall is twice as
deep as that in the center. Observing of spectra of AVACFs
leads to more detailed analyses. The spectrum of AVACFA in
the center has the local maximum at the angular frequency of
7.10, while the spectrum nearest the wall is more biased
wholly than that in the center: the local maximum and inten-
sities of low angular frequencies increased, and intensities of
high angular frequencies decreased. The spectrum of
AVACFB has a higher maximum at a higher angular fre-
quency and lower intensities around the maximum compared
with that in the center. Similar to the case of VACFs, we
think that the flat, structureless wall influences AVACFs. Re-

membering that the ellipsoid-wall potential is independent of
ei,x and ei,y, it is found that the walls do not prevent ellipsoids
from rotating parallel to the walls. Additionally, ellipsoids
nearest the wall have less chance of interactions with other
motive ellipsoids. Their slow rotational motion, therefore,
does not disturb; such a description is similar to the behavior
of VACFX and VACFY. As a result, the spectrum of
AVACFA in the high angular frequency region decreases,
those in the low angular frequency region increase approach-
ing the walls. Such richer intensities of low angular frequen-
cies cause the slower initial decay of AVACFA nearest the
center: RA increases. The flat, structureless wall is also re-
lated to RB. Ellipsoids nearest the walls interact with their
mirror-image ellipsoids frequently and have less chances of
interaction with other motive ellipsoids. Then, the orienta-
tional motion of ellipsoids are strongly constrained so as to
be parallel to walls; ellipsoids fluctuate more frequently.
These behaviors of ellipsoids influence the local maximum
of the spectrum of AVACFB, which corresponds to the char-
acteristic angular frequencies, so as to be strengthened at a
higher angular frequency and the other intensities individu-
ally are weakened. Such biased spectrum causes the deeper
negative well of AVACFB nearest the wall: RB decreases. It
is found that the flat, structureless walls causes both transla-
tional and rotational anisotropy.

Figure 10 shows the RV profiles. Our analyses has led to
that the surface area, A, is 3.335�103: VC=3.335�103. In
the region between 3�z�12, �A and �B have the large de-
viation. As in the same case of SDC and SRC, two values
must coincide with each other when the distance between the
walls is sufficiently large. The values of RVs in the center are
to be compared to that calculated in the bulk system. Cuetos
et al. have calculated the bulk RVs in canonical and micro-
canonical ensembles �32�. The present thermodynamic con-
dition does not conform to their results strictly; they investi-
gated RVs primarily in a canonical ensemble. However, we
can regard the center value of the RV profile as acceptable
because they also reported that the values of RVs calculated
in microcanonical ensembles tended to be larger than that in
canonical ensembles. Upon approach to the walls with a dis-
tance of 2.0, RV branches similarly to the SDC profile: �A
decreased and �B increased nearest the walls. While the re-
sults for � are consistent to that of R, behavior of DAVACFs
themselves are different from that of AVACFs. Figure 11
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shows DAVACFs and their spectra. Both functions nearest
�at z=0� the wall and those in the center are shown. First, the
initial values of DAVACFs both in the center and nearest the
wall are concentrated �Figs. 11�a� and 11�b��. DAVACFA
nearest a wall has a larger initial value than that in the center.
This means that the absolute value of �A nearest the walls is
larger than that in the center. On the other hand, DAVACFB
nearest the wall has a smaller initial value than that in the
center. Such anisotropy of the initial values of DAVACFs are
observed only nearest two walls and other initial values can
be regarded to be equal to each other. These results of the
difference of initial values do not lead to a violation of the
equipartition theorem because the time derivative of the di-
rector is not a variable of the Hamiltonian: the director is just
an averaged value calculated from orientation vectors of el-
lipsoids. Two rotational velocities of ellipsoids themselves
satisfy the equipartition theorem as is shown in Fig. 3. Sec-
ond, the whole shapes of DAVACFs are reviewed in Figs.
11�c� and 11�d�. The behavior of the decay of DAVACFA
nearest the wall looks very similar to that in the center. On
the other hand, DAVACFB nearest the wall decayed more
slowly to the wider negative well compared to that in the
center. Then, the spectra of DAVACFs are shown in Figs.
11�e� and 11�f�. All of the spectra of DAVACFs have greater
angular frequencies giving respective local maxima. Intensi-
ties of the spectrum of DAVACFA increase in the low angu-
lar frequency region and hardly vary in the high angular
frequency region; intensities increase on the whole upon ap-
proach to the wall. As a result, the initial value of DAVACFA

increases approaching the wall. The behavior of convergence
of DAVACFA, however, hardly changes: �A decreases upon
approach to the walls. On the other hand, the spectrum of
DAVACFB shows that the local maximum at the angular
frequency of 9.50 of the spectra grows and intensities around
the maximum weakens upon approach to the wall; the inten-
sities are weakened and biased on the whole; that causes a
smaller initial value of DAVACFB nearest the wall and
slower convergence from a negative well: �B increases upon
approach to the walls. We consider that most of the consid-
eration of AVACFs and their spectra is applicable to DA-
VACFs: the increase of intensities of the spectrum of
DAVACFA for low angular frequencies corresponds to
AVACFA and the decrease of those of DAVACFB around the
local maximum corresponds to AVACFB. However, the rela-
tion itself between the rotational motion of ellipsoids and
that of directors might be expected complicated. Because we
have observed the anisotropy of director angular velocity
near the wall, nevertheless the rotational motion of ellipsoids
satisfy the equipartition theorem over the system. If we do
not need to calculate the rotational viscosity itself, we should
remind one that the self-rotational coefficient is well-defined
and preferred in order to consider the rotational motion of
ellipsoids.

IV. CONCLUSION

We have investigated both static and dynamics properties
of nematogen liquid crystal molecules confined between two
walls. We performed constant-pressure and constant-
temperature molecular dynamics simulation to Gay-Berne
nematogen ellipsoids confined between two flat structureless
walls. Physical quantities of temperature, number density,
order parameter, self-diffusion coefficient, self-rotation coef-
ficient, and rotational viscosity were calculated as profiles as
a function of the distance from a wall.

Ellipsoids near the walls tended to be parallel to walls
under both low- and high-pressure conditions: however, the
global uniaxiality is observed only under the high-pressure
condition.

We analyzed autocorrelation functions and their spectra so
as to consider anisotropic transport behavior near walls. We
concluded that the flat, structureless walls realized by the
mirror-image condition caused growth of diffusion and rota-
tion in the plane parallel to walls, strengthening of only char-
acteristic rotational motion in the plane perpendicular to the
walls, and prevention of diffusion perpendicular to the walls.

In this research, we apply the flat, structureless walls. It is
possible to attach particles to the walls, when the research of
a more realistic system is demanded. However, one should
consider the rather expensive calculation costs when dealing
with any roughness �22,41,42�. In this case, an analysis of
spectra corresponding to autocorrelation functions will be
useful in order to investigate the transport behavior.

ACKNOWLEDGMENTS

We acknowledge Professor M. P. Allen and Dr. D. Cheung
�University of Warwick� for helpful conversations. We also

1.6 10-3

0.0 1.0 2.0 3.0 4.0

f D
A

V
A

C
F

,A
(t

)

t

1.2 10-3

8.0 10-4

4.0 10-4

0.0

0.0 1.0 2.0 3.0 4.0

f D
A

V
A

C
F

,B
(t

)

t

1.6 10-3

1.2 10-3

8.0 10-4

4.0 10-4

0.0

0 20 40 60 80

F
(ω

)

ω

2.0 10-4

1.5 10-4

1.0 10-4

5.0 10-5

0.0
0 20 40 60 80

F
(ω

)

ω

2.0 10-4

1.5 10-4

1.0 10-4

5.0 10-5

0.0

1.6 10-3

0.0 0.1 0.2 0.3 0.4

f D
A

V
A

C
F

,A
(t

)

t

1.2 10-3

8.0 10-4

4.0 10-4

0.0

0.5

f D
A

V
A

C
F

,B
(t

)

1.6 10-3

1.2 10-3

8.0 10-4

4.0 10-4

0.0

0.0 0.1 0.2 0.3 0.4
t

0.5

(a) (b)

(c) (d)

(e) (f)

FIG. 11. DAVACFs, the director angular velocity autocorrela-
tion functions, and their spectra. �a� DAVACFA, �b� DAVACFB, �c�
DAVACFA by t=0.5, �d� DAVACFB by t=0.5, �e� spectrum of
DAVACFA, and �f� spectrum of DAVACFB. DAVACFs and their
spectra nearest the wall at z=0 are shown with the solid line and
those in the center are shown with the dashed line. Figures of DA-
VACFs by t=0.5 are inserted into corresponding whole DAVACFs.

TOSHIKI MIMA AND KENJI YASUOKA PHYSICAL REVIEW E 77, 011705 �2008�

011705-10



thank S. Kameoka �Keio University� for useful discussions,
and Professor K. Kholmurodov �Joint Institute for Nuclear
Research� and Professor K. Kurihara �Tohoku University� for
conversations at the early stage of the present work. This
work was supported by Grant in Aid for the 21st C.O.E.

program at Keio University for “System Design: Paradigm
Shift from Intelligence to Life.” This research was partially
supported by the Ministry of Education, Science, Sports
and Culture, Grant-in-Aid for Young Scientists �B�, No.
17760172, 2007.

�1� C. Alba-Simionesco, B. Coasne, G. Dosseh, G. Dudziak, K.
Gubbins, R. Radhakrishnan, and M. Sliwinska-Bartkowiak, J.
Phys.: Condens. Matter 18, R15 �2006�.

�2� T. Jin, B. Zalar, A. Lebar, M. Vilfan, S. Zumer, and D. Fino-
tello, Eur. Phys. J. E 16, 159 �2005�.

�3� D. Zax et al., J. Chem. Phys. 112, 2945 �2000�.
�4� R. Evans and U. Marconi, J. Chem. Phys. 86, 7138 �1987�.
�5� S. Jiang, C. Rhykerd, and K. Gubbins, Mol. Phys. 79, 373

�1993�.
�6� L. Vega, E. Müller, L. Rull, and K. Gubbins, Adsorption 2, 59

�1996�.
�7� R. Radhakrishnan and K. Gubbins, Mol. Phys. 96, 1249

�1999�.
�8� B. Coasne, J. Czwartos, K. Gubbins, F. Hung, and M.

Sliwinska-Bartokowiak, Adsorption 11, 301 �2005�.
�9� K. Koga, H. Tanaka, and X. C. Zeng, Nature �London� 408,

564 �2000�.
�10� K. Koga and H. Tanaka, J. Chem. Phys. 122, 104711 �2005�.
�11� L. D. Gelb and K. E. Gubbins, Phys. Rev. E 55, R1290 �1997�.
�12� R. Radhakrishnan and K. E. Gubbins, Phys. Rev. Lett. 79,

2847 �1997�.
�13� K. Koga, G. T. Gao, X. C. Zeng, and H. Tanaka, Nature �Lon-

don� 412, 802 �2001�.
�14� K. Nishio, T. Morishita, W. Shinoda, and M. Mikami, J. Chem.

Phys. 125, 074712 �2006�.
�15� J. Bai, J. Wang, and X. Zeng, Proc. Natl. Acad. Sci. U.S.A.

103, 19664 �2006�.
�16� M. Whitby and N. Quirke, Nature �London� 2, 87 �2007�.
�17� B. Coasne, S. K. Jain, and K. E. Gubbins, Phys. Rev. Lett. 97,

105702 �2006�.
�18� G. D. Wall and D. J. Cleaver, Phys. Rev. E 56, 4306 �1997�.
�19� T. Gruhn and M. Schoen, Phys. Rev. E 55, 2861 �1997�.
�20� H. Steuer, S. Hess, and M. Schoen, Phys. Rev. E 69, 031708

�2004�.

�21� F. Barmes and D. J. Cleaver, Phys. Rev. E 71, 021705 �2005�.
�22� E. Gwozdz, K. Pasterny, and A. Brodka, Chem. Phys. Lett.

335, 71 �2001�.
�23� T. Miyazaki and M. Yamashita, Mol. Cryst. Liq. Cryst. Sci.

Technol., Sect. A 347, 189 �2000�.
�24� J. Gay and B. Berne, J. Chem. Phys. 74, 3316 �1981�.
�25� E. de Miguel and C. Vega, J. Chem. Phys. 117, 6313 �2002�.
�26� T. Hill, J. Chem. Phys. 16, 181 �1948�.
�27� W. G. Hoover, Phys. Rev. A 31, 1695 �1985�.
�28� J. Ilnytskyi and M. Wilson, Comput. Phys. Commun. 134, 23

�2001�.
�29� M. Allen and D. Tildesley, Computer Simulation of Liquids

�Oxford University Press, New York, 1987�.
�30� R. Eppenga and D. Frenkel, Mol. Phys. 52, 1303 �1984�.
�31� E. de Miguel, Phys. Rev. E 47, 3334 �1993�.
�32� A. Cuetos, J. Ilnytskyi, and M. Wilson, Mol. Phys. 100, 3839

�2002�.
�33� D. Rapaport, The Art of Molecular Dynamics Simulation

�Cambridge University Press, Cambridge, England, 2004�.
�34� S. Cozzini, L. Rull, G. Ciccotti, and G. Paolini, Physica A

240, 173 �1997�.
�35� M. P. Allen, Phys. Rev. Lett. 65, 2881 �1990�.
�36� S. Dvinskikh and I. Furó, J. Chem. Phys. 115, 1946 �2001�.
�37� E. de Miguel, L. F. Rull, and K. E. Gubbins, Phys. Rev. A 45,

3813 �1992�.
�38� S. Sarman and D. Evans, J. Chem. Phys. 99, 620 �1993�.
�39� S. Hess, D. Frenkel, and M. Allen, Mol. Phys. 74, 765 �1991�.
�40� S. Sharma and L. Woodcock, J. Chem. Soc., Faraday Trans.

87, 2023 �1991�.
�41� D. Cheung and F. Schmid, J. Chem. Phys. 122, 074902

�2005�.
�42� K. Kiyohara, K. Asaka, H. Monobe, N. Terasawa, and Y.

Shimizu, J. Chem. Phys. 124, 034704 �2006�.

INTERFACIAL ANISOTROPY IN THE TRANSPORT OF… PHYSICAL REVIEW E 77, 011705 �2008�

011705-11


